On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone

نویسندگان

  • Peter Arbenz
  • Cyril Flaig
چکیده

The (micro-)finite element analysis based on three-dimensional computed tomography (CT) data of human bone takes place on complicated domains composed of often hundreds of millions of voxel elements. The finite element analysis is used to determine stresses and strains at the trabecular level of bone. It is even used to predict fracture of osteoporotic bone. However, the computed stresses can deteriorate at the jagged surface of the voxel model. There are algorithms known to smooth surfaces of voxel models. Smoothing however can distort the element geometries. In this study we investigate the effects of smoothing on the accuracy of the finite element solution, on the condition of the resulting system matrix, and on the effectiveness of the smoothed aggregation multigrid preconditioned conjugate gradient method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

Influence of smoothing on voxel-based mesh accuracy in micro finite-element

The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behavior at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been ...

متن کامل

Trabecular Remodeling Simulation of a Vertebral Body with a Fixation Screw Using Voxel Finite Element Models

A three-dimensional simulation of trabecular surface remodeling was performed to investigate the basic effects of a fixation screw on the trabecular structural changes in a vertebral body. Voxel-based finite elements were used to construct computational models of the bone and screw for an entire vertebral body with the screw and for the bone-screw interface. The remodeling simulation for the en...

متن کامل

Thread Pitch Variant in Orthodontic Mini-screws: A 3-D Finite Element Analysis

Orthodontic miniscrews are widely used as temporary anchorage devices to facilitate orthodontic movements. Miniscrew loosening is a common problem, which usually occurs during the first two weeks of treatment. Macrodesign can affect the stability of a miniscrew by changing its diameter, length, thread pitch, thread shape, tapering angle and so on. In this study, a 3-D finite element analysis wa...

متن کامل

(micro-CT) imaging, and voxel-based finite element modeling to detect trabecular bone microdamage and microfracture and estimate the associated microstructural stresses and strains. METHODS Cylindrical reduced-section specimens were prepared from skeletally mature bovine proximal tibial trabecular bone

INTRODUCTION The onset of trabecular bone damage is a local phenomenon, governed by tissue-level material properties, and architecture at the initiation site. Different modes of microfracture (bending, buckling, and shearing) and microdamage (single, parallel, and cross-hatched cracks) can occur [1]. The initiation of bone damage can lead to two scenarios. In the first case, normal repair proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007